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When the size of supported metal crystal&s is dispersed about its average value the 

observed (average) specific activity depends on the shape of the size distribution. It is 

shown that information about the standard deviation of the size distribution enables an 

estimate of the difference between the observed specific activity and that of crystallites 

of the average size. A procedure is developed for determining the exact specific 

activity-size dependence from information about the crystallite size distribution and the 

corresponding average specific activity. 

NOMENCLATURE 

coeflicient of 9 defined by Eq. (22) 
factor defined by Eq. (19) 
dispersion of crystahites I”/ 
crystallite size density function 
n-th moment defined by Eq. (16) 
fraction of surface occupied by par- 
ticles such that ri-l < r < ri 
dimension of crystallites 
r--6 
gamma function 
size of metallic atom 
standard deviation 
specific activity 
approximation to #(r) defined by Eq. 
(18) 
average value 

Several techniques are now available for 
measuring the average size of supported 
metallic crystallites. These measurements 
have been used for correlating the specific 
activity (number of molecules converted 
per unit time per surface atom) of various 
reactions with the average crystallite size. 

Boudart (4) classified catalytic reactions 
into two groups: facile reactions, whose 
specific activity is insensitive to variations 
in particle size; and demanding reactions, 

whose specific activity depends on the 
particle size. Bond (1) described the follow- 
ing four different types of functional de- 
pendence of the specific activity on the 
crystallite size : 

i. Facile reactions for which the specific 
activity is independent of the particle size 
r such as found by Boreskov and Chesalova 
(2) and Boreskov et al. (3) for oxidation of 
sulfur dioxide or hydrogen on platinum 
catalysts and by Boudart and co-workers (4) 
for cyclopropane hydrogenation over plati- 
num catalysts. 

ii. Reactions with positive intrinsic factor 
(i.f.) for which the specific activity decreases 
with increasing r such as observed by Sel- 
wood and co-workers (8) in the hydrogena- 
tion of benzene by a nickel on silica catalyst 
and by Sinfelt and co-workers (5) for ethane 
hydrogenolysis by a nickel on silica-alumina 
catalyst. 

iii. Reactions with negative intrinsic fac- 
tor for which the specific activity increases 
with r such as observed by Hill and Selwood 
(7) for benzene hydrogenation by a nickel on 
alumina catalyst. 

iv. Reactions for which the specific ae- 
tivity obtains a maximal value for some 
intermediate size. 

The average crystallite size is a single 
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statistic of the size distribution and many 
different distributions have the same aver- 
age. Hence, when the reaction is demanding 
and the specific activity is not a linear 
function of r, two distributions with the 
same average size (r) may have different 
specific activities. Moreover, the average 
specific activity of all the crystallites U(r))- 
which is an observed value-differs in 
general from C(r) (the specific activity of 
crystallites of dimension (r)). Since (r) can 
be determined directly by X-ray diffraction 
line broadening measurments as well as by 
magnetization techniques for ferromagnetic 
metals,* various investigators correlated the 
two directly measurable quantities (+,r)) 
with (T), even though, to obtain a unique 
relation, one should correlate J&(Y) with (r). 

We will first make some qualitative observa- 
tions for the rather common case that #(r) 
is a monotonic function with no inflection 
points. Here we can use the well-established 
properties of convex function [Ref. (6), p. 
1501 to state that if #(r) is convex (i.e., 
$“(r) 2 0), as is likely to occur for reactions 
with positive i.f., then 

Ol49) 2 J/(r). (5) 

Similarly, if #(r) in concave ($#(r) 2 0), as is 
likely to occur for reactions with negative 
i.f., then 

In this work, we investigate the magni- 
t,ude of the deviation between u(r)) and 
+(r) due to the dispersion of the crystallites 
about the average size and relate this dif- 
ference to the standard deviation of the 
particle size distribution. A procedure is 
outlined for the exact determination of +(r) 
for the case that the particle size distribution 
is known. 

b/4-)) I d4-). (6) 

The equality sign in Eqs. (54) holds only 
if either $(r) is a linear function of r or that 
all the crystallites have the same size. More- 
over, if we add the assumption that t/(r) 
approaches asymptotically a constant value, 
say grn, then it follows from Eqs. (Yj-6) that 

I MT)) - kl 2 Iti(r) - 44. (7) 

Thus, in both these cases the dispersion 
of the crystallite sizes tends to increase the 
deviation between the observed specific 
activity and tirn. 

Difference Between (#(r)) and #(r) 
We define f(r)& as the fraction of the 

surface area for which the crystallites size 
is between 1’ and r + dr and the specific 
activity is #(r). Thus, the average activity is 

W(r)) = /o (o f(r)+(r) dr = 1 m f(z)+(z) dz, 

To clarify this point a little further, con- 

sider an example for which the crystallite 
size density function can be described by 
the gamma density function, 

where 

.Z=r-6, 

and 6 is the diameter of a 
The dispersion of the size 
defined as 

d=< 
(4’ 

(1) 

(2) 

metallic atom. 
distribution is 

(3) 

where 

(T2 = (P) - (r)* = Jo” (r - (r))*f(r) dr. (4) 

* Various methods of determining average par- 
ticle size yield averages which often are of different 
types. 

Thus, assuming a positive convex i.f. such as 

t)(z) = 1 + ae-cz, (9) 

we obtain that 

($4)) = 1 + 41 + c(z)d)-l’d, (10) 

which is always larger than 

+(z) = 1 + ae-+. 

Similarly, assuming a negative concave Cf. 
such as 

q(z) = 1 - we-c* 

we obtain that 

(11) 

(I,@)) = 1 - ~(1 + c(z)d)“d, (12) 
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FIG. 1. The effect of the dispersion on the observed 
specific activity for a reaction with a positive in- 
trinsic factor when the crystallite size is described 
by a gamma density function [Eq. @)I. 

which is always smaller than 

lgz) = 1 - we-+). (13) 

Figures 1 and 2 describe two specific 
examples. As shown, an increase in the 
dispersion d tends to increase the deviation 
between (#(r))-the observed specific ac- 
tivity and #(r). In both cases the specific 
activity is very close to its asymptotic value 
o,f unity for crystallites of dimension z = 50 
A. However, the observed specific activity 
may deviate by a large amount from unity 

20 30 40 50 

<Z>=<r7- 6 9 [A] 

FIG. 2. The effect of the dispersion on the ob- 
served specific activity for a reaction with a negative 
intrinsic factor when the crystallite size is described 
by a gamma densit,y function [Eq. (S)]. 

for distributions with the same average 
crystallite size. 

In order to obtain a quantitative estimate 
about the deviation between (#(T)) and 
#(r) we will use the Taylor series expansion 

9(r) = Fe-) + 
c 

- lp’(r) 
7 (r - k))“. (14) 

n=l . 

Averaging Eq. (14) yields 

n-here 

Mn((r)) = /u” (r - (r)PfW dr. (16) 

Hence, if $(r) is a linear function or when 
all the particles have the same size, the 
right side of Eq. (15) vanishes. If #(r) is 
sufficiently smooth around its average, we 
obtain, retaining the first term in the sum- 
mation 

W)) - 4(r) ‘v V(rb2/2. (17) 

Thus, the magnitude of the difference 
between (#(r)) and #(r) is a linear function 
of the standard deviation of the crystallite 
size distribution. The exact value of #“(r) 
cannot be determined from the measured 
values of ($(r)). However, as a first order 
approximation its value can be replaced b> 
(#(r))“-the second derivative of the ob- 
served specific activity to yield 

$4) ‘v ($49) - N47-)Y~2/2 = M-). (18) 

In order to check the accuracy of the 
above approximation the value of the correc- 
tion ratio, 

was computed for the example described in 
Fig. 1, and the results are shown in Fig. 3. 
As shown, the absolute value of C is always 
smaller than one indicating that #.(r) is 
a much better approximation to #(r) than is 
Mr)). 

Now we will consider the case that two 
catalysts have different size density func- 
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FIG. 3. The effect of the average crystallite size 
and the dispersion of C for the case shown in Fig. 1. 

tions, say fi(r) and fi(r), both of which have 
the same average and second moment, and 
examine the magnitude of the difference in 
the corresponding specific activity. Defining 

&(d) = 1" flWk) dr, (20) 

(J/z(T)) = J - f&+M(r) dr, (21) 

we obtain 

(dm) - (~cl~(r)) = f aa, (23) 
n=3 

where 

AM,= o 
/ m rvh) - .f2(79) dr. (24) 

Hence, if #(r) can be described by a 
polynomial of order two or less, both cata- 
lysts will have an identical specific activity. 
However, when #(r) has to be described by a 
polynomial of degree N 2 3 the two cata- 
lysts may not have the same specific ac- 
tivity, the difference depending on the 
moments of the two density functions and 
the magnitude of a, (3 5 n 5 N). 

graphs.] This determination of #(r) requires 
solving the integral equation, 

W(r) > = b - f(++W dr. (25) 

While it may be tempting to solve for q(r) 
from the results of a single experiment, this 
procedure usually leads to large errors since 
integral equations of the above form are 
rather insensitive to the correct form of $(r) 
and moreover the value of f(r) and #(r) can 
be determined only within a certain experi- 
mental accuracy. Thus, it would be necessary 
to conduct several experiments for catalysts 
with different crystallite size distributions 
and the resulting set of integral equations 
should be solved simultaneously for x,b(r). 

In practice, f(r) is determined by counting 
the number of crystallites within a pre- 
scribed size range. We will consider the case 
that the size distribution is composed of N 
intervals and define by P(rJ the fraction 
of the metallic surface area occupied by 
particles for which ri--l 5 r 5 ri. Here Eq. 
(25) reduces to 

N 

2 Ph) Wh> > = W) >, (26) 
i=l 

where {#(rJ) is the average specific activity 
of all the crystallites in the i-th size interval. 
In order to determine each of the N values 
of (#(rJ) we need to conduct at least N 
experiments with catalysts of different size 
distributions. Writing down Eq. (26) for 
each one of the experiments, a set of linear 
equations is obtained, which can be solved 
for the N values of (+(rJ). It should be 
noted that this procedure assumes that the 
value of (#(rJ) is invariant in all the experi- 
ments. This should be a rather good ap- 
proximation when the size intervals are 
small. The validity of the assumption can be 
tested by performing additional experiments 
and comparing the observed and predicted 
value of &b(r)). 

Exact Determination of $(r) CONCLUSIONS 

We will now describe a technique for This work indicates that the experi- 
extracting the correct value of #(r) from mentally observed specific activity may 
experimental data when the complete size differ from #(r)-the deviation depending on 
distribution is known. [This information the crystallite size distribution and on the 
may be obtained from electron (scan) micro- form of fi(r). To obtain the exact dependence 
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of #(r), it is necessary to measure, in addi- 
tion to the average specific activity, the 
complete size distribution. Lack of informa- 
tion about this size distribution will intro- 
duce a certain uncertainty into the correla- 
tion-the magnitude of which can be 
estimated using the equations presented 
above. This work points out the desirability 
of determining, in addition to the average 
size, at least the standard deviation of the 
crystallite size distribution when an accurate 
correlation is sought, since this information 
enables an estimate of the effect of the 
dispersion on the observed specific activity. 
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